
Simulator Training for
Hardware Pilots

 Alexander Trica & Kevin Krammer

Agenda

● About us
● Project/System Overview
● Needs and Challenges
● Simulator Architecture
● Implementation
● Lessons & Conclusions

About Us

Kevin Krammer

● Senior Software Engineer and Trainer at
KDAB

● Technical Project Lead HMI Development

Alexander Trica

● Head of Embedded ARM and PCAP
Touch Development at Data Modul

● Project Lead Embedded Hardware and
BSP Development

System Design

HW:

• Single Board Computer using
i.MX8Mmini NXP application processor
running Linux

• 19” bar-type stretched LVDS TFT display

• PCAP-Touch connected via I²C

• Sensor / Actuator Board with Cortex-M4
by STM running FreeRTOS

• Actuators and sensors

Interaction

• User inputs via PCAP Touch based on
the UI shown on the TFT display

• Start of application use cases that may
trigger actuators or read out sensor data

Single Board Computer

HW:

• i.MX8Mmini NXP application
processor

• Dual Cortex A53 @ 1.8GHz

• Single Cortex M4

• 1GB LPDDR4

• 16GB EMMC

• 19” bar-type stretched TFT

OS:

• Mainline Linux kernel 5.10

• YOCTO 3.1 (Dunfell, LTS)

• Qt 5.12

CAN Interface on OS Level

HW:

• SPI-to-CAN since the i.MX8Mmini has
no native CAN interface (like the i.MX6)

• SPI Framework needed because of
MCP25625

• CAN Socket has been added to the
existing Linux networking subsystem

• Socket layer as highest layer in kernel
space

• API abstraction layer that handles a
higher level protocol between
actuator/sensor board and application

• RPC calls for actuators

• Reading data points for sensor data
Based on https://www.can-cia.org/fileadmin/resources/documents/proceedings/2012_kleine-budde.pdf
and extended by Alexander Trica and Elmar Albert to cover for MCP25625 and programming API

CAN-Bus

MCP25625

Qt Application

Linux Socket Layer

CAN-
SocketRAW

RX dispatcher / CAN core

Routing and packet scheduler

CAN0

CAN-Driver mcp251x

SPI-Driver/ Framework

Programming API Point of interest

https://www.can-cia.org/fileadmin/resources/documents/proceedings/2012_kleine-budde.pdf

Needs & Challenges

• Automated Testing

• Be able to run Unit/Component/System Tests of code that communicates with the
actuator/sensor board

• For Blackbox UI Testing with Squish

• Be able to run these on the CI in virtualized environments

• Faster development by avoiding build for and deploy to target

• Better control over values, timing, errors than HW provided demo mode

Needs & Challenges

• HW is in development during application SW development

• Development on the latest HW is not always possible

• CAN communication protocol is under development during application SW development

• 4 sets of hardware vs. 8 developers in 3 different countries

• Amplified by Covid-19 and working from home

Simulator Architecture

Server/Client

• Simulator has Server role

• Can be run in-process and out-of-process

• Can use simulator desktop UI with SW
deployed on target

• Simulator can keep state across SW
restarts

Frontend/Backend

• Functionality in shared library

• QtWidgets based UI

• QObject API with signals for requests

• Property API for Squish integration

Implementation

Communication

• TCP/IP

• Google Protocol Buffers

• Simple, custom message framing

Build-Time API Replacement

• API helpfully already as C++ Interfaces

• Simulator Client implements these

• Build selected with QMake config option

• #ifdef only when necessary

Example

Synchronization between HMI and Board

• Request/Response driven State Machine

• HMI sends requests

• Board/Simulator responds

In this example

• Board has already booted

• It is running the Production firmware

• It is running the right firmware version

• Code snippets are simplified

• Only looks at the firmware type request/response

API

Protobuf

Client Implementation

Simulator Implementation

Use by State Machine

Use by Unit Test

Simulator UI

Lessons & Conclusions

• Works very well!

• Solves the HW availability issues for most development needs

• Great coverage of various scenarios with automated tests

• TCP/IP a bit problematic for parallel test execution

• Maybe consider a simple transport layer using delayed method invocation as a build-time or
run-time option

• Google Protocol Buffers easy to use, a bit tricky as a dependency

• Pre-Built binaries (platform & compiler specific) in VCS

• Would be nice to have something with integrated build or package managed

Thank You!

ATrica@data-modul.com
 kevin.krammer@kdab.com

mailto:ATrica@data-modul.com

	Slide 1
	Slide3
	Slide 3
	Slide 4
	page2
	Slide5
	Slide 7
	Slide6
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

