
Demystifying C++ for C developers

Qt Embedded Days 2021

Giuseppe D’Angelo

giuseppe.dangelo@kdab.com

2

About me
● Senior Software Engineer,

KDAB
● Developer & Trainer
● Qt Approver
● Ask me about QtCore, QtGui,

QtQuick, ...
– And also about Modern C++,

3D graphics

3

C++ usage in Embedded Systems
● C++ usage has consistently been behind C usage in all rankings.
● Since... forever!

4

C/C++ usage in Embedded Systems

Source: IEEE Spectrum Top Programming Languages, Embedded, 2020

5

C/C++ usage in Embedded Systems

Source: IEEE Spectrum Top Programming Languages, Embedded, 2015-2020

2015 2016 2017 2018 2019 2020
0

10
20
30
40
50
60
70
80
90

100

Python
C
C++
Assembly

Year

Ra
nk

in
g

6

Why is that ?

7

Why is that?
● Is C++ simply not available for some developers?

– E.g. embedded vendors still not providing C++ toolchains.
– (Or providing outdated, bugged ones)

● Luckily, this bad trend has disappeared.

8

Why is that?
● Is C++ not suited for embedded development?

– Does it perform too poorly?
– Does it not offer (at least) the same good qualities of C++, if not more?

● Simply untrue
– “Don’t pay for what you don’t use” is a C++ mantra
– Many times C++ is more stringent than C, not vice versa
– Ask your closest C++ advocate: they’ll swear that C++ is better than C.

9

Why is that?
● Do C developers simply not like C++?
● If so:

– How do we make C++ development more encouraging?
– How do we find out what the “pain points” are?
– Is there anything we can do about them?

Unrelated stock photo
of a C developer who

may not like C++ very much.

10

IN A NUTSHELL

Poor adoption of C++ by C programmers
is not a one-dimensional problem.

And it’s hardly a technological problem.

11

Is there even a choice?
● For the overwhelming majority of developers, programming

languages are a tool to get the job done.
● Not everyone can afford spending time to learn a new tool. They’ve

got projects to deliver, honoring the specs, on time, within budget.
– So please don’t harass your fellow C developer with “how great C++ is”!

12

Is there even a choice?
● Even if some developer could afford learning C++, why should they?
● Getting out of your comfort zone is a huge demand.

– People are willing to do so only for extremely good reasons.
– Seeing the “advantages over there” is usually not enough;

being scared of the “disadvantages over here” is a much better approach.
● C++ complexity is daunting!

Even seeing the advantages is not so obvious.

13

Page count of each published C/C++ standard

C99 C11 C17/C18 C2x C++98 C++11 C++17 C++20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Pa
ge

s

The size of the C++20 Standard is three
times the size of the latest C draft !

14

What do people do when facing
hard-to-explain complexity?

They invent stories.

Myths and legends are all born this way.

15

“Use C++, and after a few days you’ll face this…!”

Guess what? That’s a myth. There’s no need of using any of these C++
facilities, especially when coming from C.

template <typename F, typename IndexSequence, typename TP>
class FunctionObjectSlotArgumentsHelper;
template <typename F, std::size_t ... Ns, typename ... Args>
class FunctionObjectSlotArgumentsHelper<F, std::index_sequence<Ns...>, TypePack<Args...>>
{
 using Arguments = TypePack<Args...>;

 using ListOfCompatibleArguments = BoolPack<
 (IsInvocable<F, typename TruncateTypePack<Ns, Arguments>::type>::value) ...
 >;

 // Get the index of the last compatible one, and use that one to determine the arguments
 static constexpr inline auto IndexOfLastCompatibile = IndexOfLastTrueInPack<ListOfCompatibleArguments>::value;
 static_assert(IndexOfLastCompatibile >= 0,
 "There is no subset of arguments compatible with the callable");

 using type = typename TruncateTypePack<IndexOfLastCompatibile, Arguments>::type;
 ...

16

The origin of “Fake news”
● Stories are born to let people stay in their own comfort zone.

– Mocking the “adversary” is the perfect example of this.

● “False news is probably born of imprecise individual observations or
imperfect eyewitness accounts, but the original accident is not
everything: by itself, it really explains nothing.

The error propagates itself, grows, and ultimately survives only on one
condition—that it finds a favorable cultural broth in the society where it
is spreading. Through it, people unconsciously express all their
prejudices, hatreds, fears, all their strong emotions.”
– Réflexions d’un historien sur les fausses nouvelles de la guerre, Marc Bloch, 1921

17

Literally scientific people ; engineers ; develolopers :
they’re all humans, and therefore,

they are not immune from this!

(Do we want to go in a emacs / vi flamewar ?)

18

So how to make C++ more pleasant for C developers?
● I don’t still fully know.
● My advice, if you are a C developer and want to start exploring C++: stick

to simple things.
– Identify simple patterns that you can fully control.
– Maybe that are perfect, free replacements for patterns you’ve already been using.
– Get confidence using those.

19

Page count of each published C/C++ standard

C99 C11 C17/C18 C2x C++98 C++11 C++17 C++20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Pa
ge

s

} The bits you want to
focus on when you start

20

C++ is C++
● Also please ignore anyone claiming that “using a subset of C++ is not

using C++”.
– Programming languages are tools.

● Using C++ as “C with classes” isn’t wrong. At bare minimum, you get
proper syntax for OOP, and destructors!

Let me use the rest of this talk to show you some
appreciation of C++ features, and hopefully, debunk

some of the “false stories” you may have heard.

22

“C++ generates bigger code”
● (An overreaching statement; are the input conditions equal?)
● In C++ you don’t pay for what you don’t use, not even in terms of

code size.
● C++ compilers can optimize for size just as well as C compilers.
● But: some C++ features may cost you in terms of code size.

Don’t use/disable them if you’re not fine with this.

23

Remove functionalities that may add code overhead
● If you don’t use RTTI (dynamic_cast, typeid, exceptions), disable it:

– -fno-rtti

● If you don’t use exceptions, disable their support:
– -fno-exceptions -fno-asynchronous-unwind-tables

24

Don’t link to the C++ Standard Library if not used
● g++ and clang++ by default link against the respective C++ standard

libraries (libstdc++ / libc++). Those libraries may be huge!
● If you not use anything but operator new / delete and similar low

level functions, you may want to link to the “core” subsets instead:
– libsupc++ for libstdc++ (-lsupc++)
– libc++abi for libc++ (-lc++abi)

● Use gcc (not g++) and clang (not clang++) to perform linking.

25

Limit the usage of templates to combat code bloat
● Templates may generate more code, trading speed for code size.
● Use whatever solutions you have from C to write “generic” code if size

is a problem. Voilà!
– When using templates then? To increase correctness and being even more

generic than a solution achievable in C.

26

C can be pretty ugly.

C++ solves lots of the « superficial » problems.

27

C99 can be ugly
● C99 does not have overloads: similar functions require different

names. Using the wrong name may even work.

double sin (double angle);
float sinf(float angle);
long double sinl(long double angle);

double d = 3.14;
printf("sin %f\n", sin(d));
float f = 1.0f;
printf("sin %f\n", sinf(f));

28

C11 can be better...
● C11 improves by introducing generics:

double sin (double angle);
float sinf(float angle);
long double sinl(long double angle);

#define sin(angle) _Generic((angle), \
 long double: sinl, \
 float: sinf, \
 default: sin \
)(angle)

double d = 3.14;
printf("sin %f\n", sin(d));
float f = 1.0f;
printf("sin %f\n", sin(f));

29

C98 is best
● C++ has always had overloading, without an awkward syntax.

double sin(double angle);
float sin(float angle);
long double sin(long double angle);

double d = 3.14;
printf("sin %f\n", sin(d));
float f = 1.0f;
printf("sin %f\n", sin(f));

30

Classes as… first-class citizen
● Everyone already does OOP in C;

why not using a more convenient syntax?

pthread_mutex *mutex;
pthread_mutex_init(mutex, NULL); // create
pthread_mutex_lock(mutex); // use it
// ...
pthread_mutex_unlock(mutex);
pthread_mutex_destroy(mutex); // destroy

GString *str = g_string_new("Hello");
str = g_string_append(str, ", world!");
g_print(str);
g_string_free(str);

std::mutex mutex;
mutex.lock();
// ...
mutex.unlock();

QByteArray ba("Hello");
ba.append(", world");
printf("%s", ba.data());

31

Classes as… first-class citizen
By the way: did you notice the lack of the “destroy” step in C++?

pthread_mutex *mutex;
pthread_mutex_init(mutex, NULL);
pthread_mutex_lock(mutex);
// ...
pthread_mutex_unlock(mutex);
pthread_mutex_destroy(mutex);

GString *str = g_string_new("Hello");
str = g_string_append(str, ", world!");
g_print(str);
g_string_free(str);

std::mutex mutex;
mutex.lock();
// ...
mutex.unlock();

QByteArray ba("Hello");
ba.append(", world");
printf("%s", ba.data());

32

Destructors
● C++ destroys local objects automatically when control leaves their

scope.
● No need to remember to do so manually. A bless.
● And, each class can define what to do when it gets destroyed:

– free memory? ✓
– close a file descriptor? ✓
– open a mutex? ✓
– disconnect from the database? ✓
– ...

33

Structured error handling in C
int doSomething()
{
 int result = FAILURE;
 int *buffer = (int *)malloc(1024 * sizeof(int));
 if (!buffer)
 goto err1;
 int fd = open("file", O_RDONLY | O_CLOEXEC);
 if (fd < 0)
 goto err2;
 pthread_mutex_lock(mtx);
 // ... do the actual work here ...
 result = SUCCESS;
 pthread_mutex_unlock(mtx);
 close(fd);
err2:
 free(buffer);
err1:
 return result;
}

34

Structured error handling in C
int doSomething()
{
 int result = FAILURE;
 int *buffer = (int *)malloc(1024 * sizeof(int));
 if (!buffer)
 goto err1;
 int fd = open("file", O_RDONLY | O_CLOEXEC);
 if (fd < 0)
 goto err2;
 pthread_mutex_lock(mtx);
 // ... do the actual work here ...
 result = SUCCESS;
 pthread_mutex_unlock(mtx);
 close(fd);
err2:
 free(buffer);
err1:
 return result;
}

35

Structured error handling in C++: RAII

int doSomethingBetter()
{
 std::unique_ptr<int[]> buffer(new int[1024]);
 if (!buffer)
 return FAILURE;

 FdHandler fd("file", O_RDONLY | O_CLOEXEC); // not in std
 if (!fd)
 return FAILURE;

 std::scoped_lock<std::mutex> lock(mutex);

 // ... do the work …

 return SUCCESS;
}

● Resource Acquisition Is Initialization

Nothing to do to clean up the resources acquired, in either success or in
failure paths.

36

Structured error handling in C++: RAII+Exceptions

void doSomethingWithExceptions()
{
 std::unique_ptr<int[]> buffer(new int[1024]);
 FdExceptHandler fd("file", O_RDONLY | O_CLOEXEC);
 std::scoped_lock<std::mutex> lock(mutex);

 // ... do the work ...
}

● If the holder objects throw an exception if they fail to initialize, the code can
be simplified even further:

● HOWEVER: now you pay for the convenience. An experiment on i386 (GCC
10.2, -m32) shows ~100 more bytes generated for the above code.

37

Inheritance in C
● Libraries allow you to define “subclasses” for their types

– “Put an object of this type as the first member of your struct”
– “Put this macro as the first thing in your struct”

● Why? So that the memory layout of your subclass is fixed, and a
pointer to your subclass can be converted to a pointer to the base
class.

typedef struct
{
 GSource source;
 QList<GPollFDWithQSocketNotifier *> pollfds;
 int activeNotifierPos;
} GSocketNotifierSource;

source

pollfds

activeNotifierPos

G
S
o
c
k
e
t
N
o
t
i
f
i
e
r
S
o
u
r
c
e

38

Inheritance in C
● The type safety still brittle
● How do the library functions accept a custom object of yours?
● That’s right, a void *. There’s no special conversion between a

pointer-to-derived and a pointer-to-base, so you need to lose type
safety.
– At least, Glib does this a bit better.

39

Inheritance in C++
● Explicit syntax
● Memory layout is the same, but that’s not so important
● The language guarantees the safety of pointer convertibility: pointers

to the derived class automatically convert the pointers to the base
class.

struct GSocketNotifierSource : GSource
{
 QList<GPollFDWithQSocketNotifier *> pollfds;
 int activeNotifierPos;
};

void fun(GSource *s);
GSocketNotifierSource *object = … ;
fun(object);

source

pollfds

activeNotifierPos

G
S
o
c
k
e
t
N
o
t
i
f
i
e
r
S
o
u
r
c
e

40

Inheritance in C again
● To customize behavior, we install pointers to functions:
typedef struct
{
 GSource source;
 QList<GPollFDWithQSocketNotifier *> pollfds;
 int activeNotifierPos;
} GSocketNotifierSource;
GSourceFuncs socketNotifierSourceFuncs = {
 socketNotifierSourcePrepare,
 socketNotifierSourceCheck,
 socketNotifierSourceDispatch,
 nullptr,
 nullptr,
 nullptr
};
src = g_source_new(&socketNotifierSourceFuncs,
 sizeof(GSocketNotifierSource));

source

pollfds

activeNotifierPos

G
S
o
c
k
e
t
N
o
t
i
f
i
e
r
S
o
u
r
c
e

sourcePrepare

sourceCheck

sourceDispatch

41

Runtime polymorphism in C++
● The same is achieved via virtual functions in C++.

struct GSocketNotifierSource : GSource
{
 void sourcePrepare() override;
 void sourceCheck() override;
 void sourceDispatch() override;
 QList<GPollFDWithQSocketNotifier *> pollfds;
 int activeNotifierPos;
};

source

pollfds

activeNotifierPos

sourcePrepare

sourceCheck

sourceDispatch

G
S
o
c
k
e
t
N
o
t
i
f
i
e
r
S
o
u
r
c
e

pollfds

virtual table
for
GSNS

42

Last but not least...

43

C type system is way too lax.
None of this should compile. Yet it does. It doesn’t when using the equivalent
C++ facilities. How many times you hit a bug because of these?

// implicit prototype (may not match the actual function)
undeclared_function(123);

void f(int *);
void *v = malloc(32);
f(v);
short *s = malloc(32);
f(s); // warning, not error

int *sourceBuffer;
double *destinationBuffer;
memcpy(destinationBuffer, sourceBuffer, size*sizeof(int));

44

In C++:
● Conversions are more strict
● Everything must be declared before use
● Algorithms provide more type-safety at same or equal speed

undeclared_function(123); // ERROR. Missing declaration

void f(int *);
void *v = malloc(32);
f(static_cast<int *>(v)); // OK, but must add a cast

short *s = malloc(32);
f(static_cast<int *>(s)); // ERROR: pointer types not compatible

int *source;
double *destination;
std::copy_n(source, size, destination); // OK: copy-converts each int to double

45

Goodies that are in C++ and not in C
● For… no reason. C is sabotaging your productivity!

int bigValue = 1'000'000; // grouping

uint mask = 0b00000100; // binary literals

// range based for loop
static const int primes[] = {
 1, 2, 3, 5, 7, 11, 13,
 17, 19, 23, 29, 31, 37
};
for (int p : primes)
 print(p);

46

Keep the conversation open.

● C still dominates embedded development
● But C++ is by far the easiest path forward for existing C developers.
● Don’t jump blindly into C++.

– There’s no need of abandon all of your experience from C!
– Adopt only what you need, and when you need it.

● Legends about programming languages will stay with us for a long,
long time. Try to understand them for what they are.

Thank you!
Questions?

48

References
● IEEE Spectrum, The Top Programming Languages
● Embedded.com
● GLib Reference Manual 2.66
● Michael Abrash, The Graphics Programming Black Book
● Dan Saks, “Extern C”, CppCon 2016
● Reflections of a Historian on the False News of the War, Marc Bloch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

