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About me
● Senior Software Engineer,

KDAB
● Developer & Trainer
● Qt Approver
● Ask me about QtCore, QtGui, 

QtQuick, ...
– And also about Modern C++,

3D graphics
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C++ usage in Embedded Systems
● C++ usage has consistently been behind C usage in all rankings.
● Since... forever!
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C/C++ usage in Embedded Systems

Source: IEEE Spectrum Top Programming Languages, Embedded, 2020
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C/C++ usage in Embedded Systems

Source: IEEE Spectrum Top Programming Languages, Embedded, 2015-2020
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Why is that ?
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Why is that?
● Is C++ simply not available for some developers?

– E.g. embedded vendors still not providing C++ toolchains.
– (Or providing outdated, bugged ones)

● Luckily, this bad trend has disappeared.
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Why is that?
● Is C++ not suited for embedded development?

– Does it perform too poorly?
– Does it not offer (at least) the same good qualities of C++, if not more?

● Simply untrue
– “Don’t pay for what you don’t use” is a C++ mantra
– Many times C++ is more stringent than C, not vice versa
– Ask your closest C++ advocate: they’ll swear that C++ is better than C.
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Why is that?
● Do C developers simply not like C++?
● If so:

– How do we make C++ development more encouraging?
– How do we find out what the “pain points” are?
– Is there anything we can do about them?

Unrelated stock photo
of a C developer who

may not like C++ very much.
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IN A NUTSHELL

Poor adoption of C++ by C programmers
is not a one-dimensional problem.

And it’s hardly a technological problem.
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Is there even a choice? 
● For the overwhelming majority of developers, programming 

languages are a tool to get the job done.
● Not everyone can afford spending time to learn a new tool. They’ve 

got projects to deliver, honoring the specs, on time, within budget.
– So please don’t harass your fellow C developer with “how great C++ is”!
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Is there even a choice? 
● Even if some developer could afford learning C++, why should they?
● Getting out of your comfort zone is a huge demand.

– People are willing to do so only for extremely good reasons.
– Seeing the “advantages over there” is usually not enough; 

being scared of the “disadvantages over here” is a much better approach.
● C++ complexity is daunting! 

Even seeing the advantages is not so obvious.
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Page count of each published C/C++ standard
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The size of the C++20 Standard is three 
times the size of the latest C draft !
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What do people do when facing
hard-to-explain complexity?

They invent stories. 

Myths and legends are all born this way.
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“Use C++, and after a few days you’ll face this…!”

Guess what? That’s a myth. There’s no need of using any of these C++ 
facilities, especially when coming from C.

template <typename F, typename IndexSequence, typename TP>
class FunctionObjectSlotArgumentsHelper;
template <typename F, std::size_t ... Ns, typename ... Args>
class FunctionObjectSlotArgumentsHelper<F, std::index_sequence<Ns...>, TypePack<Args...>>
{
    using Arguments = TypePack<Args...>;

    using ListOfCompatibleArguments = BoolPack<
        (IsInvocable<F, typename TruncateTypePack<Ns, Arguments>::type>::value) ...
    >;

    // Get the index of the last compatible one, and use that one to determine the arguments
    static constexpr inline auto IndexOfLastCompatibile = IndexOfLastTrueInPack<ListOfCompatibleArguments>::value;
    static_assert(IndexOfLastCompatibile >= 0,
                  "There is no subset of arguments compatible with the callable");

    using type = typename TruncateTypePack<IndexOfLastCompatibile, Arguments>::type;
    ...
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The origin of “Fake news”
● Stories are born to let people stay in their own comfort zone. 

– Mocking the “adversary” is the perfect example of this.

● “False news is probably born of imprecise individual observations or 
imperfect eyewitness accounts, but the original accident is not 
everything: by itself, it really explains nothing.

The error propagates itself, grows, and ultimately survives only on one 
condition—that it finds a favorable cultural broth in the society where it 
is spreading. Through it, people unconsciously express all their 
prejudices, hatreds, fears, all their strong emotions.”
– Réflexions d’un historien sur les fausses nouvelles de la guerre, Marc Bloch, 1921



17

Literally scientific people ; engineers ; develolopers : 
they’re all humans, and therefore,

they are not immune from this! 

(Do we want to go in a emacs / vi flamewar ?)
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So how to make C++ more pleasant for C developers?
● I don’t still fully know. 
● My advice, if you are a C developer and want to start exploring C++: stick 

to simple things.
– Identify simple patterns that you can fully control.
– Maybe that are perfect, free replacements for patterns you’ve already been using.
– Get confidence using those.
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Page count of each published C/C++ standard
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} The bits you want to 
focus on when you start
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C++ is C++
● Also please ignore anyone claiming that “using a subset of C++ is not 

using C++”.
– Programming languages are tools.

● Using C++ as “C with classes” isn’t wrong. At bare minimum, you get 
proper syntax for OOP, and destructors!



Let me use the rest of this talk to show you some 
appreciation of C++ features, and hopefully, debunk 

some of the “false stories” you may have heard.
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“C++ generates bigger code”
● (An overreaching statement; are the input conditions equal?)
● In C++ you don’t pay for what you don’t use, not even in terms of 

code size.
● C++ compilers can optimize for size just as well as C compilers.
● But: some C++ features may cost you in terms of code size. 

Don’t use/disable them if you’re not fine with this.
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Remove functionalities that may add code overhead
● If you don’t use RTTI (dynamic_cast, typeid, exceptions), disable it:

– -fno-rtti

● If you don’t use exceptions, disable their support:
– -fno-exceptions -fno-asynchronous-unwind-tables
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Don’t link to the C++ Standard Library if not used
● g++ and clang++ by default link against the respective C++ standard 

libraries (libstdc++ / libc++). Those libraries may be huge!
● If you not use anything but operator new / delete and similar low 

level functions, you may want to link to the “core” subsets instead:
– libsupc++ for libstdc++ (-lsupc++)
– libc++abi for libc++ (-lc++abi)

● Use gcc (not g++) and clang (not clang++) to perform linking.



25

Limit the usage of templates to combat code bloat
● Templates may generate more code, trading speed for code size.
● Use whatever solutions you have from C to write “generic” code if size 

is a problem. Voilà!
– When using templates then? To increase correctness and being even more 

generic than a solution achievable in C.
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C can be pretty ugly.

C++ solves lots of the « superficial » problems.
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C99 can be ugly
● C99 does not have overloads: similar functions require different 

names. Using the wrong name may even work.

double      sin (double angle);
float       sinf(float angle);
long double sinl(long double angle);

double d = 3.14;
printf("sin %f\n", sin(d));
float f = 1.0f;
printf("sin %f\n", sinf(f));
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C11 can be better...
● C11 improves by introducing generics:

double      sin (double angle);
float       sinf(float angle);
long double sinl(long double angle);

#define sin(angle) _Generic((angle), \
    long double: sinl, \
    float: sinf, \
    default: sin \
)(angle)

double d = 3.14;
printf("sin %f\n", sin(d));
float f = 1.0f;
printf("sin %f\n", sin(f));
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C98 is best
● C++ has always had overloading, without an awkward syntax.

double      sin(double angle);
float       sin(float angle);
long double sin(long double angle);

double d = 3.14;
printf("sin %f\n", sin(d));
float f = 1.0f;
printf("sin %f\n", sin(f));
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Classes as… first-class citizen
● Everyone already does OOP in C; 

why not using a more convenient syntax?

pthread_mutex *mutex;
pthread_mutex_init(mutex, NULL); // create
pthread_mutex_lock(mutex);    // use it
// ...
pthread_mutex_unlock(mutex);   
pthread_mutex_destroy(mutex); // destroy

GString *str = g_string_new("Hello");
str = g_string_append(str, ", world!");
g_print(str);
g_string_free(str);

std::mutex mutex;
mutex.lock();
// ...
mutex.unlock();
    

QByteArray ba("Hello");
ba.append(", world");
printf("%s", ba.data());
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Classes as… first-class citizen
By the way: did you notice the lack of the “destroy” step in C++?

pthread_mutex *mutex;
pthread_mutex_init(mutex, NULL); 
pthread_mutex_lock(mutex);    
// ...
pthread_mutex_unlock(mutex);   
pthread_mutex_destroy(mutex); 

GString *str = g_string_new("Hello");
str = g_string_append(str, ", world!");
g_print(str);
g_string_free(str);

std::mutex mutex;
mutex.lock();
// ...
mutex.unlock();
    

QByteArray ba("Hello");
ba.append(", world");
printf("%s", ba.data());
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Destructors
● C++ destroys local objects automatically when control leaves their 

scope. 
● No need to remember to do so manually. A bless. 
● And, each class can define what to do when it gets destroyed:

– free memory? ✓
– close a file descriptor? ✓
– open a mutex? ✓
– disconnect from the database? ✓
– ...
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Structured error handling in C
int doSomething()
{
    int result = FAILURE;
    int *buffer = (int *)malloc(1024 * sizeof(int));
    if (!buffer)
        goto err1;
    int fd = open("file", O_RDONLY | O_CLOEXEC);
    if (fd < 0)
        goto err2;
    pthread_mutex_lock(mtx);
    // ... do the actual work here ...
    result = SUCCESS;
    pthread_mutex_unlock(mtx);
    close(fd);
err2:
    free(buffer);
err1:
    return result;
}
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Structured error handling in C
int doSomething()
{
    int result = FAILURE;
    int *buffer = (int *)malloc(1024 * sizeof(int));
    if (!buffer)
        goto err1;
    int fd = open("file", O_RDONLY | O_CLOEXEC);
    if (fd < 0)
        goto err2;
    pthread_mutex_lock(mtx);
    // ... do the actual work here ...
    result = SUCCESS;
    pthread_mutex_unlock(mtx);
    close(fd);
err2:
    free(buffer);
err1:
    return result;
}
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Structured error handling in C++: RAII

int doSomethingBetter()
{
    std::unique_ptr<int[]> buffer(new int[1024]);
    if (!buffer)
        return FAILURE;

    FdHandler fd("file", O_RDONLY | O_CLOEXEC); // not in std
    if (!fd)
        return FAILURE;

    std::scoped_lock<std::mutex> lock(mutex);

    // ... do the work …

    return SUCCESS;
}

● Resource Acquisition Is Initialization

Nothing to do to clean up the resources acquired, in either success or in 
failure paths.
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Structured error handling in C++: RAII+Exceptions

void doSomethingWithExceptions()
{
    std::unique_ptr<int[]> buffer(new int[1024]);
    FdExceptHandler fd("file", O_RDONLY | O_CLOEXEC);
    std::scoped_lock<std::mutex> lock(mutex);
 
   // ... do the work ...
}

● If the holder objects throw an exception if they fail to initialize, the code can 
be simplified even further:

● HOWEVER: now you pay for the convenience. An experiment on i386 (GCC 
10.2, -m32) shows ~100 more bytes generated for the above code.
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Inheritance in C
● Libraries allow you to define “subclasses” for their types

– “Put an object of this type as the first member of your struct”
– “Put this macro as the first thing in your struct”

● Why? So that the memory layout of your subclass is fixed, and a 
pointer to your subclass can be converted to a pointer to the base 
class.

typedef struct
{
    GSource source;
    QList<GPollFDWithQSocketNotifier *> pollfds;
    int activeNotifierPos;
} GSocketNotifierSource;

source

pollfds

activeNotifierPos
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Inheritance in C
● The type safety still brittle
● How do the library functions accept a custom object of yours?
● That’s right, a void *. There’s no special conversion between a 

pointer-to-derived and a pointer-to-base, so you need to lose type 
safety.
– At least, Glib does this a bit better.
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Inheritance in C++
● Explicit syntax
● Memory layout is the same, but that’s not so important
● The language guarantees the safety of pointer convertibility: pointers 

to the derived class automatically convert the pointers to the base 
class.

struct GSocketNotifierSource : GSource
{
    QList<GPollFDWithQSocketNotifier *> pollfds;
    int activeNotifierPos;
};

void fun(GSource *s);
GSocketNotifierSource *object = … ;
fun(object);

source
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Inheritance in C again
● To customize behavior, we install pointers to functions:
typedef struct
{
    GSource source;
    QList<GPollFDWithQSocketNotifier *> pollfds;
    int activeNotifierPos;
} GSocketNotifierSource;
GSourceFuncs socketNotifierSourceFuncs = {
    socketNotifierSourcePrepare,
    socketNotifierSourceCheck,
    socketNotifierSourceDispatch,
    nullptr,
    nullptr,
    nullptr
};
src = g_source_new(&socketNotifierSourceFuncs,
                   sizeof(GSocketNotifierSource));

source

pollfds

activeNotifierPos
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Runtime polymorphism in C++
● The same is achieved via virtual functions in C++.

struct GSocketNotifierSource : GSource
{
    void sourcePrepare() override;
    void sourceCheck() override;
    void sourceDispatch() override;
    QList<GPollFDWithQSocketNotifier *> pollfds;
    int activeNotifierPos;
};

source

pollfds

activeNotifierPos

sourcePrepare

sourceCheck

sourceDispatch
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virtual table
for
GSNS
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Last but not least...
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C type system is way too lax.
None of this should compile. Yet it does. It doesn’t when using the equivalent 
C++ facilities. How many times you hit a bug because of these?

// implicit prototype (may not match the actual function)
undeclared_function(123);
    
void f(int *);
void *v = malloc(32);
f(v);
short *s = malloc(32);
f(s); // warning, not error 

int *sourceBuffer;
double *destinationBuffer;
memcpy(destinationBuffer, sourceBuffer, size*sizeof(int));
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In C++:
● Conversions are more strict
● Everything must be declared before use
● Algorithms provide more type-safety at same or equal speed

undeclared_function(123);     // ERROR. Missing declaration

void f(int *);
void *v = malloc(32);
f(static_cast<int *>(v));  // OK, but must add a cast

short *s = malloc(32);
f(static_cast<int *>(s));  // ERROR: pointer types not compatible

int *source;
double *destination;
std::copy_n(source, size, destination); // OK: copy-converts each int to double
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Goodies that are in C++ and not in C
● For… no reason. C is sabotaging your productivity!

int bigValue = 1'000'000;  // grouping

uint mask = 0b00000100;  // binary literals

// range based for loop
static const int primes[] = { 
    1, 2, 3, 5, 7, 11, 13,
    17, 19, 23, 29, 31, 37 
};
for (int p : primes) 
    print(p);
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Keep the conversation open.

● C still dominates embedded development
● But C++ is by far the easiest path forward for existing C developers. 
● Don’t jump blindly into C++. 

– There’s no need of abandon all of your experience from C!
– Adopt only what you need, and when you need it.

● Legends about programming languages will stay with us for a long, 
long time. Try to understand them for what they are.



Thank you!
Questions?
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