
1   |

Understanding system integrity  
and how testing can help in
preventing field failures
Sami Kassimäki (Author)

Product Manager

sami@tuxera.com

Tuxera
Espoo, Finland

www.tuxera.com

Whitepaper

INTRODUCTION

When a device fails in the field, consequences can 
be significant. In our conversations with embedded 
original equipment manufacturers (OEMs), one thing is 
certain: addressing a problem in the field is costly. With 
the complexity of modern embedded designs, root 
cause analysis can be difficult and painstaking. This 
process pulls resources for field diagnostics and post-
mortem analysis – most typically from new product 
development – and it impacts time-to-market.

Embedded devices operate in conditions where 
sudden power interruptions and other hazards can 
occur at any time. As data storage needs of these 
devices has increased dramatically over the years, 
unreliable data storage can be a significant contributor 
to field failures. Failsafe and long-lasting data storage 
is not a simple matter and requires careful planning. 
This paper discusses the different methods to long-
term reliability, and how thoughtful and diligent 
storage testing can help ensure a rugged data storage 
system that contributes to preventing field failures and 
increasing the lifetime of an embedded device.

DEFINING RELIABILITY
“I don’t care about reliability” said no one, ever. In reality, 
the definition of reliability and its relative importance 
can vary. Asking yourself what level of reliability you, 
or perhaps more importantly your customers, require 
is a key first step in determining your storage needs.

When the system crashes or power is lost, data not yet 
committed to the media is usually lost as well.

Consider the importance of these three 
key aspects of storage system reliability:  

1.	 Does it power on? This is hardware reliability – 
mean time between failures (MTBF) that exceeds 
expected lifetime under typical use conditions.

2.	 Does it boot? This is system integrity – devices 
which feature high system integrity are designed to 
start up after an unexpected power loss or system 
crash. File data consists of user data as well as 
metadata. Metadata refers to data that provides 
information about the user data, as well as details 
like the location of the data on the media. A file 
system with high system integrity maintains the 
metadata in an always functional state, while a file 
system check will clean up any fragments of data. 
Some of these checks run in the background – for 
example fsck() on ext4.

3.	 Is the data I expect to be there intact? This is data 
integrity – what was written by an application is 
what is read back from the media.

Understanding what is or isn’t committed is therefore 
crucial to an application’s ability to ensure data integrity. 
This challenge can exist for both the file system and 
the media – both can have uncommitted data in cache 
or buffers. Controlling how much and what data is “at 
risk” of being lost is the goal in order to achieve the 
expectation of data integrity.

Control over data-at-risk is managed with mount settings, 
flush and fsync commands, and the design of the software 



2   |

and hardware. In many designs, the techniques required 
to achieve this control can directly work against the raw 
performance of the solution.

HOW FILE SYSTEMS CAN IMPROVE  
SYSTEM INTEGRITY

Not all file systems are created equal. One of the most 
used file system formats in embedded systems is FAT 
(File Allocation Table), which originated in the desktop 
environment and has been around since the 1970s. 
It’s widely adopted largely due to its simplicity and 
interoperability. While commonly in use, it’s a less than 
perfect solution for embedded devices. This is largely 
because FAT was originally developed for the desktop 
environment, where hazards such as power disruptions 
are a rare occurrence. This can lead to problems with 
embedded devices, where these power disruptions 
are common. For example, interrupting a write in the 
middle could cause a catastrophic corruption – in the 
worst case causing the whole partition to be lost and 
irretrievable, and potentially preventing the system 
from booting back up. 

However, interoperability is one key consideration 
in modern, connected embedded devices. When 
interoperability is required from the system, using 
industry standard file systems – such as FAT, ExFAT or 
NTFS – is needed. While the original implementation 
of the file system is prone to system reliability issues 
under power loss, these issues can be mitigated with 
an optimized file system implementation. GravityCS by 
Tuxera offers a comprehensive portfolio of industry-
standard file systems – including APFS, ExFAT, 
FAT, HFS+ and NTFS – with additional methods for 
protecting system integrity. One of the methods 
GravityCS uses is patented additional memory 
structures and prioritized write operations. While this 
keeps the on-media structure the same, the order of 
operations can improve the chances of recovery and 
reduce the impact to the meta-data, thus protecting 
system integrity. 

Journaling
Beyond industry-standards file systems, other types of 
file systems use different methods for system integrity – 
the most common being journaling. File systems that use 
this technique track metadata changes in an additional 

reserved location called the journal. When recovering 
from an unexpected interruption, a journaling file system 
walks the structures on the media to decide which files 
on the media are valid and which are not. Then the fsck() 
tool is able to recover lost space and correct any other 
errors. Many Linux file systems use journaling, including 
ext4, Btrfs and F2FS. The downside of journaling is the 
additional overhead that’s caused by journal replay 
during mount time, which can result in inconsistent mount 
times when booting up after power is lost. Journaling can 
also be used to improve data integrity. However, using 
journaling to provide better data integrity has significant 
overhead, as all the changes in data are tracked in the 
journal and this usually leads to significantly reduced 
overall performance. 

Transactional file systems
Transactional file systems are developed with 
embedded systems in mind. Transactional file systems, 
such as Tuxera’s Reliance family of file systems, can 
mitigate performance issues caused by journaling and 
provide both system integrity and data integrity. One of 
the ways this is achieved is by not overwriting data on 
the media, thus preserving a “known good state”. After 
unexpected power loss or system failure, this type of 
file system mounts quickly – it merely must determine 
the proper media state by reading the metaroots. No 
file system check or other cleanup is required.

On the file system level, data-at-risk can be managed 
with mount settings, flush and fsync commands, and 
the design of the software and hardware. In many 
designs, this control can be directly opposed to the 
raw performance of the solution. For this reason, the 
Reliance family of Tuxera file systems provide runtime 
access to this control through an API and provided 
system library.

Fig. 1: On-disk layout in journaling and transactional file systems



3   |

Memory wear out issues
As more bits are stored in one cell, the lifetime of 
the flash device diminishes. With embedded devices 
generating more data, this can lead to issues. All flash 
memory must be erased before it is written – modern 
flash can never be overwritten. While it can be written 
in relatively small pages, typically from 512 bytes to 16 
KB in size, it must be erased in larger chunks, referred 
to as erase blocks. Most eMMC and UFS media use a 
massively parallel array of NAND chips, and have an 
effective erase block size of 2MB to 16MB.

Flash lifespan is measured in write/erase cycles. 
However, it’s important to note that it’s really the erase 
portion which counts against flash life. For example, 
you could write absolutely nothing to the media, and 
erase the same block repeatedly until it was officially 
worn out and would no longer process an erase 
request. Regardless of whether there was a large or 
small amount of data written to that block, it was the 
number of erases that actually mattered. 

Write amplification
Exacerbating the already tenuous situation of the 
ever-decreasing media lifespan is the issue of write 
amplification, whereby writing a relatively small 
amount of data to the solid-state media may use up 
a disproportionate amount of the media’s endurance.

Write amplification can be caused by several layers, and 
it is use case specific. File system write amplification 

SOFTWARE – ONLY AS RELIABLE AS THE 
HARDWARE IT’S RUNNING ON

Software can go a long way toward providing system 
integrity, but software is only as reliable as the hardware 
it operates on. Flash memory provides some unique 
challenges with regard to the customary expectations 
of Moore’s Law – the hardware is not always improving 
in every respect. Raw flash performance has been 
reduced as stronger error detection and correction 
(EDC) has become necessary, and flash endurance 
has steadily decreased as lithographies have been 
shrinking. What’s more, write amplification has 
compounded the challenge of preserving flash lifetime. 

Let’s look at some of these hardware-related factors 
in more detail.

Power disruption issues
Flash devices are optimized for maximum data storage, 
and by design a certain low level of bit errors are 
expected. All NAND flash chips suffer from vulnerabilities 
when erase or program operations are interrupted, the 
most frequent cause of which is power disruptions. 
Interrupting the programming of a NAND page by power 
loss can result in problems that are hard to detect or 
work around. A partially programmed NAND cell may 
not consistently read back the same value, or may have 
poor data retention. In the unfortunate case of corruption 
occurring where file system metadata is being stored, 
the system might even become inoperable. 

Fig. 2: Illustration of write amplification caused by garbage collection flash memory.



4   |

is the ratio between what the application requested 
the file system to write and the total amount the file 
system requests the underlying block device to write. 
When flash wear-out is a significant concern for overall 
reliability, a file system can help keep the file system 
write amplification low with small metadata overhead 
and low fragmentation.

Device write amplification is measured as the ratio 
between what the file system explicitly requests the 
block device stack to write and the actual amount 
which is written on to the physical media. Device write 
amplification is caused by garbage collection and 
wear-leveling. 

Wear-leveling
One of the factors causing device write amplification 
is wear-leveling. This is due to the fact that in order to 
get the maximum lifetime from the device, the device 
must be used equally. Wear-leveling is a process to 
ensure that an entire flash memory device – or an array 
of devices – is used in a uniform fashion in order to 
extend the overall lifetime of the flash. However, this 
can also cause write amplification as static data is 
moved around the device multiple times.

As the file system and flash device together contribute 
to the total write amplification of the device, it’s important 
to test how these two components work together.

Data retention
Data retention is the time a device can hold data without 
refreshing. Embedded devices are used in environments 
where maintenance and replacement can be difficult, 

such as in space, or soldered inside a car system. This 
means that devices need to have a long lifetime, and 
that they have to work reliably. In order to do that, the 
data stored on the device must be kept safe. While the 
device ages, its capability to retain that data decreases 
drastically. With fresh flash, a device can usually hold 
the data for many years. However, when these devices 
are nearing end of life, the likelihood of data corruption 
increases significantly.

TESTING FOR SYSTEM INTEGRITY
To prevent field failures and to ensure system integrity, 
extensive testing is needed. As we’ve discussed above, 
the file system and flash device are both key components 
for system integrity. What’s more, testing those 
components and ensuring that they work well together is 
crucial for the reliability of the system.

As flash technology is moving forward with incredible 
speed, it brings performance and reliability challenges 
to device manufacturers. These professionals struggle 
to find the time, resources, and expertise to adequately 
validate vendor claims – and to make wise product 
choices that will truly satisfy their requirements. This 
shortcoming in the product selection process can result 
in choosing a more expensive part than needed “just in 
case”, or ending up with something that seemed ok with 
limited testing but ends up failing in the field – leading to 
product recall expenses or other bad outcomes. 

As we have worked with suppliers and device OEMs 
in industries such as automotive and aerospace that 
have demanding data storage needs, we have seen 

Fig. 3: Difference between dynamic and static wear-leveling.

DYNAMIC STATIC

2252 2163 1573 1508 1944 2167 1869 1590 2261 2188 2233 1922 2182 1768 1601 1598

2171 1610 1912 2058 1598 1643 1753 2211 2042 2151 1597 1554 1624 2139 1541 1756

2302 1648 1542 1586 1683 2294 1589 1722 1673 2167 1991 1579 2333 2208 1573 2055

1702 1763 1524 1944 2197 1656 1922 1544 1664 1551 1541 2174 2191 1889 2193 2168

1812 2230 2184 2206 1707 2124 2163 1531 2184 2164 1988 1658 1591 1613 2225 2225

2167 1549 1548 1669 1593 2000 2234 2242 1616 2149 2213 2228 2224 1592 1539 1719

1530 1542 2217 1673 1572 1717 1542 1536 2190 1614 1634 1631 2221 1512 1578 1509

2161 1673 2259 1563 1703 2038 2245 2255 1722 2248 1575 1524 2249 2207 1666 2181

2194 1601 2240 1822 2163 1526 2204 2163 1687 2256 1593 2146 1627 1950 2139 2181

1884 1536 2185 2289 2117 2240 1851 1510 2292 1937 1568 1623 2308 2178 1568 2154

1638 2176 1703 1625 1608 1520 2142 2200 2161 2185 2214 1774 1590 2086 1529 2159

2164 2130 1521 2162 1651 2246 1620 1823 1871 1511 2329 1639 1522 1566 2175 1675

1540 1736 1696 1513 2249 2366 1909 1517 2194 1608 2165 1628 2216 1920 1905 2154

1652 2198 1591 1543 1843 2205 1549 1533 2150 1553 1580 2165 1522 1568 1850 1648

66 5504 17 1 103 1 57 1 75 1 60 5440 1 1 74 1

5488 1 5472 1 5235 5339 1 1 5389 1 23 5455 1 5353 1 39

27 1 52 1 161 47 1 95 1 27 81 65 1 62 1 5496

5463 1 5413 1 166 5362 1 5583 1 5387 69 1 5403 1 253 1

5534 1 5410 1 1 184 64 1 5404 1 72 3 63 5403 1 77

13 1 1 46 5469 1 1 43 1 66 1 5375 1 16 5481 1

1 136 1 23 1 169 1 5436 1 5420 5291 1 7 1 5205 5338

1 2 92 172 5431 121 5480 139 305 1 41 242 1 32 172 39

5412 5186 1 38 91 5407 88 32 126 112 5313 32 47 2 23 1

1 1 1 837 1 1 1 1 87 5355 5359 1 1 4 1 1

1 155 5352 1 1 1 1 40 1 1 1 1 99 1 1 1

2 39 1 86 5265 1 111 1 26 5401 1 1 35 1 38 1

22 51 1 5291 1 32 5490 1 55 1 40 1 100 1 52 1

70 5404 1 554 1 5264 5374 1 121 1 5321 5348 1 84 1 115



5   |

Let’s talk about optimizing your flash memory reliability and lifetime. 
Get in touch with us at sales@tuxera.com.

the consequences of sub-optimal hardware selection 
firsthand. With our expertise we have helped our 
customers in bringing next-generation products quickly 
to market, assisting them through every step of the way.

Tuxera Flash Testing Service provides comprehensive and 
comparative testing, analysis, and reporting of the impact 
of complex use cases on the lifetime and performance of 
a customer specified selection of flash devices. Our Flash 
Testing Service provides customers with independent 
guidance in the selection of storage technologies that 
will meet the requirements for cost-effective and strong 
performing products. This guidance helps OEMs calculate 
real-world usage of flash storage, potentially saving in bill 
of materials costs while lowering testing overhead for 
the customer. Complex system level test cases provide 
insights beyond standardized testing on the behavior of 
flash devices in customer use cases, and identify possible 
failure points early in the development phase.

CONCLUSIONS
Reliability remains one of the most important factors 
that distinguish leading embedded products from their 
also-ran competitors. Anticipating and preventing field 
failures enable market leaders to invest in innovation 
rather than costly resource-draining diagnoses, 
repair, and redesign. Today, data integrity is a strict 
requirement in some industries but not in others. 
However, as embedded devices are entrusted with 
more data all the time, the need for failproof data 
storage is emerging as a more relevant need across 
the board. The correct testing can enable you to 
deeply understand the reliability of your devices – with 
precision unique to your use case. Don’t entrust the 
success of your next innovative product to a storage 
subsystem that is inadequately designed and tested.



6   |

ABOUT TUXERA 
Tuxera is the leading provider of quality-assured embedded storage management software and networking 
technologies. Helping people and businesses store and do more with their data, our software is at the core of 
phones, tablets, cars, TV sets, cameras, drones, external storage, routers, spacecraft, IoT devices, and more. We 
help you store your data reliably, while making file transfers fast and content easily accessible. Tuxera is also an 
active member of multiple industry organizations, including JEDEC, AGL, SD Association, The Linux Foundation, 
and many others. Founded in 2008, Tuxeraʼs headquarters are located in Finland, with regional offices in China, 
Germany, South Korea, Japan, Taiwan, and the US.

Tuxera Inc. Global HQ 
Westendintie 1
02160 Espoo
Finland
www.tuxera.com 

Copyright © 2021 Tuxera Inc. and/or its affiliates. All rights reserved. TUXERA, Tuxeraʼs logo, FlashFX, FlashFX Tera, 
Fusion File Share by Tuxera, GravityCS by Tuxera, Reliance, Reliance Nitro, Reliance Edge, ROM-DOS, VelocityFS 
by Tuxera, are trademarks or registered trademarks of Tuxera Inc. All other product names are trademarks of their 
respective holders. Specification and price change privileges reserved.


